Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
J Biotechnol ; 366: 25-34, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36870479

RESUMO

Strain robustness during production of recombinant molecules is of major interest to ensure bioprocess profitability. The heterogeneity of populations has been shown in the literature as a source of instability in bioprocesses. Thus, the heterogeneity of the population was studied by evaluating the robustness of the strains (stability of plasmid expression, cultivability, membrane integrity and macroscopic cell behavior) during well-controlled fedbatch cultures. On the context of microbial production of chemical molecules, isopropanol (IPA) has been produced by recombinant strains of Cupriavidus necator. Plasmid stability was monitored by the plate count method to assess the impact of isopropanol production on plasmid stability, depending on implanted plasmid stabilization systems for strain engineering designs. With the reference strain Re2133/pEG7c, an isopropanol titer of 15.1 g·L-1 could be achieved. When the isopropanol concentration has reached about 8 g. L-1, cell permeability increased (up to 25 %) and plasmid stability decreased significantly (up to 1.5 decimal reduction rate) resulting in decreased isopropanol production rates. Bioprocess robustness under isopropanol producing conditions was then investigated with two plasmid construction strategies (1) Post Segregational Killing hok/sok (in Re2133/pEG20) and (2) expression of GroESL chaperon proteins (in Re2133/pEG23). Plasmid stability for strain Re2133/pEG20 (PSK hok/sok) appears to be improved up to 11 g. L-1 of IPA compared to the reference strain (8 g. L-1 IPA). Nevertheless, cell permeability followed the same dynamic as the reference strain with a drastic increase around 8 g. L-1 IPA. On the contrary, the Re2133/pEG23 strain made it possible to minimize the cell permeability (with a constant value at 5 % IP permeability) and to increase the growth capacities in response to increased isopropanol concentrations but plasmid stability was the weakest. The metabolic burden, linked to either the overexpression of GroESL chaperones or the PSK hok/sok system, seems to be deleterious for the overall isopropanol production compared to the reference strain (RE2133/pEG7c) even if we have shown that the overexpression chaperones GroESL improve membrane integrity and PSK system hok/sok improve plasmid stability as long as isopropanol concentration does not exceed 11 g L- 1.


Assuntos
2-Propanol , Escherichia coli , 2-Propanol/metabolismo , Escherichia coli/genética , RNA Bacteriano/metabolismo , Plasmídeos/genética , Reatores Biológicos
2.
mSystems ; 8(2): e0127422, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971551

RESUMO

Rational engineering of gas-fermenting bacteria for high yields of bioproducts is vital for a sustainable bioeconomy. It will allow the microbial chassis to renewably valorize natural resources from carbon oxides, hydrogen, and/or lignocellulosic feedstocks more efficiently. To date, rational design of gas-fermenting bacteria such as changing the expression levels of individual enzymes to obtain the desired pathway flux is challenging, because pathway design must follow a verifiable metabolic blueprint indicating where interventions should be executed. Based on recent advances in constraint-based thermodynamic and kinetic models, we identify key enzymes in the gas-fermenting acetogen Clostridium ljungdahlii that correlate with the production of isopropanol. To this extent, we integrated a metabolic model in comparison with proteomics measurements and quantified the uncertainty for a variety of pathway targets needed to improve the bioproduction of isopropanol. Based on in silico thermodynamic optimization, minimal protein requirement analysis, and ensemble modeling-based robustness analysis, we identified the top two significant flux control sites, i.e., acetoacetyl-coenzyme A (CoA) transferase (AACT) and acetoacetate decarboxylase (AADC), overexpression of which could lead to increased isopropanol production. Our predictions directed iterative pathway construction, which enabled a 2.8-fold increase in isopropanol production compared to the initial version. The engineered strain was further tested under gas-fermenting mixotrophic conditions, where more than 4 g/L isopropanol was produced when CO, CO2, and fructose were provided as the substrates. In a bioreactor environment sparging with CO, CO2, and H2 only, the strain produced 2.4 g/L isopropanol. Our work highlighted that the gas-fermenting chasses can be fine-tuned for high-yield bioproduction by directed and elaborative pathway engineering. IMPORTANCE Highly efficient bioproduction from gaseous substrates (e.g., hydrogen and carbon oxides) will require systematic optimization of the host microbes. To date, the rational redesign of gas-fermenting bacteria is still in its infancy, due in part to the lack of quantitative and precise metabolic knowledge that can direct strain engineering. Here, we provide a case study by engineering isopropanol production in gas-fermenting Clostridium ljungdahlii. We demonstrate that a modeling approach based on the thermodynamic and kinetic analysis at the pathway level can provide actionable insights into strain engineering for optimal bioproduction. This approach may pave the way for iterative microbe redesign for the conversion of renewable gaseous feedstocks.


Assuntos
2-Propanol , Dióxido de Carbono , 2-Propanol/metabolismo , Dióxido de Carbono/metabolismo , Engenharia Metabólica , Cinética , Clostridium/genética , Gases/metabolismo , Hidrogênio/metabolismo , Termodinâmica
3.
Biotechnol Appl Biochem ; 70(3): 1421-1434, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36807387

RESUMO

The purpose of this article is to design a green and comprehensive utilization process for preparing chitosan from crab shells. Glutamate acid was used as a decalcifying agent for crab shells, and the mixed solution of potassium hydroxide/isopropanol was used for deproteinization and deacetylation to prepare chitosan. Glutamic acid and isopropanol could be recovered for recycling. At the same time, calcium carbonate and protein in crab shells were converted into calcium hydrogen phosphate and compound fertilizer containing nitrogen, phosphorus, and potassium, respectively. The prepared chitosan was characterized by Fourier-transform infrared (FT-IR), differential scanning calorimetry (DSC), x-ray diffraction (XRD), and scanning electron microscopy (SEM), and its deacetylation degree and viscosity average molecular weight were 88.7% ± 0.68% and 792.1 ± 10.82 kDa, respectively. The recoveries of glutamic acid and isopropanol were 95.56% ± 1.39% and 88.14% ± 1.13%, respectively. The prepared chitosan has large molecular weight and deacetylation degree, controllable production cost, comprehensive utilization of crab shell components, and greatly reduced waste emissions.


Assuntos
Braquiúros , Quitosana , Animais , Quitosana/química , Braquiúros/química , Braquiúros/metabolismo , Ácido Glutâmico/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , 2-Propanol/metabolismo , Difração de Raios X
4.
Enzyme Microb Technol ; 161: 110114, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36070644

RESUMO

Phenotypic heterogeneity in bioprocesses is suspected to reduce performances, even in case of monoclonal cultures. Here, robustness of an engineered isopropanol-overproducing strain and heterogeneity of its plasmid expression level were evaluated in fed-batch cultures. Previously, eGFP was identified as a promising plasmid expression reporter for C. necator. Here, the behavior of 3 engineered strains (isopropanol overproducer, eGFP producer, and isopropanol/eGFP co-producers) was compared at the single-cell and population levels. Production yields and rates have been shown to be dependent on isopropanol/acetone tolerance. A link could be established between the variations in the fluorescence intensity distribution and isopropanol/acetone production using the eGFP-biosensor. Co-production of isopropanol and eGFP exhibited cumulative metabolic burden compared to single overexpression (isopropanol or eGFP). Expression of eGFP during isopropanol production resulted in lower isopropanol tolerance with a loss of membrane integrity resulting in protein leakage and reduced plasmid expression. The co-expression of heterologous isopropanol pathway and eGFP-biosensor enabled to demonstrate the heterogeneity of robustness and plasmid expression at the single cell level of C. necator. It highlighted the conflicting interactions between isopropanol overproduction and eGFP reporter system. Fluorescent reporter strains, a crucial tool for monitoring subpopulation heterogeneity although biases have to be considered.


Assuntos
Cupriavidus necator , 2-Propanol/metabolismo , Acetona/metabolismo , Cupriavidus necator/genética , Óperon , Plasmídeos/genética
5.
J Biotechnol ; 359: 29-34, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36150604

RESUMO

Isopropanol has a good potential as a new fuel substitution. In the model biosynthesis pathway of isopropanol synthesis, acetoacetyl-CoA is converted to acetoacetate by acetoacetyl-CoA transferases, which requires an acetate molecule as a substrate. Herein, a novel isopropanol synthesis pathway based on mammalian ketone metabolic pathway was developed. In this pathway, acetoacetyl-CoA is condensed with acetyl-CoA to generate 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) by HMG-CoA synthase, and then catalyzed by HMG-CoA lyase to generate acetoacetate. This process is acetate-independent. Under the same experimental system using glycerol as carbon source, the E. coli strain MG::ISOP1 containing the novel pathway produced 11.7 times more isopropanol than the strain MG::ISOP0 containing the model pathway. The pta-ackA knockout mutant strain MG∆pta-ackA::ISOP1, which reduced the conversion of acetyl-CoA to acetate, further increased the production from 76 mg/L to 360 mg/L. In another strategy, knocking out atoDA to block the acetoacetate degradation pathway in strain MG∆atoDA::ISOP1 increased the production to 680 mg/L. By knocking out both of pta-ackA and atoDA, strain MGΔpta-ackAΔatoDA::ISOP1 produced 964 mg/L of isopropanol, which was 12.7 times that of MG::ISOP1. This study indicated that the novel pathway is competent for isopropanol synthesis, and provides a new perspective for biosynthesis of isopropanol.


Assuntos
2-Propanol , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , 2-Propanol/metabolismo , Acetoacetatos/metabolismo , Acetilcoenzima A/metabolismo , Coenzima A-Transferases/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Glicerol/metabolismo , Acetatos/metabolismo , Carbono/metabolismo
6.
Microb Cell Fact ; 21(1): 168, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986289

RESUMO

BACKGROUND: Isopropanol is widely used as a biofuel and a disinfectant. Chemical preparation of isopropanol destroys the environment, which makes biological preparation of isopropanol necessary. Previous studies focused on the use of expensive glucose as raw material. Therefore, the microbial cell factory that ferments isopropanol with cheap raw materials will provide a greener way to produce isopropanol. RESULTS: This study converted crude glycerol into isopropanol using Y. lipolytica. As a microbial factory, the active natural lipid and fatty acid synthesis pathway endows Y. lipolytica with high malonyl-CoA production capacity. Acetoacetyl-CoA synthase (nphT7) and isopropanol synthesis genes are integrated into the Y. lipolytica genome. The nphT7 gene uses the accumulated malonyl-CoA to synthesize acetoacetyl-CoA, which increases isopropanol production. After medium optimization, the best glycerol medium was found and resulted in a 4.47-fold increase in isopropanol production. Fermenter cultivation with pure glycerol medium resulted in a maximum isopropanol production of 1.94 g/L. In a crude glycerol fermenter, 1.60 g/L isopropanol was obtained, 82.53% of that achieved with pure glycerol. The engineered Y. lipolytica in this study has the highest isopropanol titer reported. CONCLUSIONS: The engineered Y. lipolytica successfully produced isopropanol by using crude glycerol as a cheap carbon source. This is the first study demonstrating the use of Y. lipolytica as a cell factory to produce isopropanol. In addition, this is also a new attempt to accumulate lipid synthesis precursors to synthesize other useful chemicals by integrating exogenous genes in Y. lipolytica.


Assuntos
Yarrowia , 2-Propanol/metabolismo , Coenzima A/metabolismo , Ácidos Graxos/metabolismo , Glicerol/metabolismo , Engenharia Metabólica , Yarrowia/genética , Yarrowia/metabolismo
7.
Int J Antimicrob Agents ; 60(4): 106663, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35995073

RESUMO

BACKGROUND: The role of mrkA adhesin expression, biofilm production, biofilm viability and biocides in the biofilm of carbapenemase-producing Klebsiella pneumoniae isolates was investigated. METHODS: Seventeen isolates representing different sequence types and carbapenemases were investigated. mrkA expression was determined by real-time reverse transcription polymerase chain reaction. Biofilm production (25°C and 37°C, with and without humidity) was determined by the crystal violet assay. The effect of isopropanol, povidone-iodine, sodium hypochlorite, chlorhexidine digluconate, benzalkonium chloride, ethanol and triclosan on biofilm was determined. The effect of povidone-iodine on biofilm biomass and thickness was also determined by confocal laser scanning microscopy. RESULTS: mrkA expression ranged from 28.2 to 1.3 [high or intermediate level; 64% of high-risk (HR) clones] and from 21.5 to 1.3 (50% of non-HR clones). At 25°C, biofilm formation was observed in 41% of isolates (absence of humidity) and 35% of isolates (presence of humidity), whereas at 37°C, biofilm formation was observed in 76% of isolates with and without humidity. At 25°C, biofilm producers were more frequently observed in HR clones (45% with humidity and 55% without humidity) than non-HR clones (17% with and without humidity). Biofilm viability from day 21 was higher at 25°C than 37°C. The greatest decrease in biofilm formation was observed with povidone-iodine (29% decrease), which also decreased biofilm thickness. CONCLUSIONS: Biofilm formation in carbapenemase-producing K. pneumoniae is related to mrkA expression. Biofilm formation is affected by temperature (37°C>25°C), whereas humidity has little effect. Biofilm viability is affected by temperature (25°C>37°C). At 25°C, HR clones are more frequently biofilm producers than non-HR clones. Povidone-iodine can decrease biofilm production and biofilm thickness.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Desinfetantes , Infecções por Klebsiella , Triclosan , 2-Propanol/metabolismo , 2-Propanol/farmacologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Compostos de Benzalcônio/farmacologia , Biofilmes , Células Clonais , Desinfetantes/farmacologia , Etanol/metabolismo , Etanol/farmacologia , Violeta Genciana , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana , Óperon , Povidona-Iodo/farmacologia , Prevalência , Hipoclorito de Sódio/metabolismo , Hipoclorito de Sódio/farmacologia , Triclosan/farmacologia , beta-Lactamases/metabolismo
8.
Tissue Eng Regen Med ; 19(5): 1089-1098, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35551635

RESUMO

BACKGROUND: Tissue engineering approaches to treat damaged bone include various tissue transplants such as autologous, allogeneic, and xenografts. Artificial materials have been widely introduced to meet the demand for graft materials, but insufficiency in supply is still not resolved. In this study, human adipose tissue, easily obtained from the human body, was harvested, and the tissue was decellularized to fabricate a decellularized human adipose tissue matrix (DM) as an alternative graft material. METHODS: Human adipose tissue was obtained via liposuction. The obtained fresh adipose tissue sample was cut into pieces then put into decellularization solution (1% antibiotic-antimycotic solution and 1% phenylmethanesulphonyl fluoride). Lipids were further removed via treatment in isopropanol. The sample was then subjected to another enzymatic digestion and lipid removal processes. The obtained decellularized adipose tissue matrix was lyophilized to form a graft material in disc shape. RESULTS: Decellularization was confirmed by nuclear staining methods and detection of RNA and DNA via PCR. Bone morphogenetic protein 2 (BMP2)-loaded DM showed the ability to form new bone tissue when implanted in subcutaneous tissue. In recovery of a mouse calvarial defect model, BMP2-loaded DM exhibited similar levels of bone tissue regeneration efficiency compared with a well-defined commercial product, BMP2-loaded CollaCote®. CONCLUSION: The DM developed in this study is expected to address the problem of insufficient supply of graft materials and contribute to the treatment of bone defects of critical size as an alternative bone graft material with preserved extracellular matrix components.


Assuntos
Proteína Morfogenética Óssea 2 , Alicerces Teciduais , 2-Propanol/metabolismo , Tecido Adiposo , Animais , Antibacterianos , Proteína Morfogenética Óssea 2/metabolismo , Regeneração Óssea , DNA/metabolismo , Matriz Extracelular/metabolismo , Fluoretos/metabolismo , Humanos , Lipídeos , Camundongos , RNA/metabolismo
9.
Molecules ; 27(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630784

RESUMO

Starch is the primary form of reserve carbohydrate storage in plants. Rice (Oryza sativa L.) is a monocot whose reserve starch is organized into compounded structures within the amyloplast, rather than a simple starch grain (SG). The mechanism governing the assembly of the compound SG from polyhedral granules in apposition, however, remains unknown. To further characterize the proteome associated with these compounded structures, three distinct methods of starch granule preparation (dispersion, microsieve, and flotation) were performed. Phase separation of peptides (aqueous trypsin-shaving and isopropanol solubilization of residual peptides) isolated starch granule-associated proteins (SGAPs) from the distal proteome of the amyloplast and the proximal 'amylome' (the amyloplastic proteome), respectively. The term 'distal proteome' refers to SGAPs loosely tethered to the amyloplast, ones that can be rapidly proteolyzed, while proximal SGAPs are those found closer to the remnant amyloplast membrane fragments, perhaps embedded therein-ones that need isopropanol solvent to be removed from the mature organelle surface. These two rice starch-associated peptide samples were analyzed using nano-liquid chromatography-tandem mass spectrometry (Nano-HPLC-MS/MS). Known and novel proteins, as well as septum-like structure (SLS) proteins, in the mature rice SG were found. Data mining and gene ontology software were used to categorize these putative plastoskeletal components as a variety of structural elements, including actins, tubulins, tubulin-like proteins, and cementitious elements such as reticulata related-like (RER) proteins, tegument proteins, and lectins. Delineating the plastoskeletal proteome begins by understanding how each starch granule isolation procedure affects observed cytoplasmic and plastid proteins. The three methods described herein show how the technique used to isolate SGs differentially impacts the subsequent proteomic analysis and results obtained. It can thus be concluded that future investigations must make judicious decisions regarding the methodology used in extracting proteomic information from the compound starch granules being assessed, since different methods are shown to yield contrasting results herein. Data are available via ProteomeXchange with identifier PXD032314.


Assuntos
Oryza , 2-Propanol/metabolismo , Endosperma/química , Oryza/química , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Proteoma/metabolismo , Proteômica , Amido/química , Espectrometria de Massas em Tandem
10.
Microb Cell Fact ; 21(1): 78, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35527247

RESUMO

BACKGROUND: Currently, the generation of genetic diversity for microbial cell factories outpaces the screening of strain variants with omics-based phenotyping methods. Especially isotopic labeling experiments, which constitute techniques aimed at elucidating cellular phenotypes and supporting rational strain design by growing microorganisms on substrates enriched with heavy isotopes, suffer from comparably low throughput and the high cost of labeled substrates. RESULTS: We present a miniaturized, parallelized, and automated approach to 13C-isotopic labeling experiments by establishing and validating a hot isopropanol quenching method on a robotic platform coupled with a microbioreactor cultivation system. This allows for the first time to conduct automated labeling experiments at a microtiter plate scale in up to 48 parallel batches. A further innovation enabled by the automated quenching method is the analysis of free amino acids instead of proteinogenic ones on said microliter scale. Capitalizing on the latter point and as a proof of concept, we present an isotopically instationary labeling experiment in Corynebacterium glutamicum ATCC 13032, generating dynamic labeling data of free amino acids in the process. CONCLUSIONS: Our results show that a robotic liquid handler is sufficiently fast to generate informative isotopically transient labeling data. Furthermore, the amount of biomass obtained from a sub-milliliter cultivation in a microbioreactor is adequate for the detection of labeling patterns of free amino acids. Combining the innovations presented in this study, isotopically stationary and instationary automated labeling experiments can be conducted, thus fulfilling the prerequisites for 13C-metabolic flux analyses in high-throughput.


Assuntos
2-Propanol , Corynebacterium glutamicum , 2-Propanol/metabolismo , Aminoácidos/metabolismo , Isótopos de Carbono/metabolismo , Corynebacterium glutamicum/metabolismo , Marcação por Isótopo/métodos
11.
ACS Synth Biol ; 10(10): 2628-2638, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34549587

RESUMO

Rational design and modification of autotrophic bacteria to efficiently produce high-value chemicals and biofuels are crucial for establishing a sustainable and economically viable process for one-carbon (C1) source utilization, which, however, remains a challenge in metabolic engineering. In this study, autotrophic Clostridium ljungdahlii was metabolically engineered to efficiently co-produce three important bulk chemicals, isopropanol, 3-hydroxybutyrate (3-HB), and ethanol (together, IHE), using syngas (CO2/CO). An artificial isopropanol-producing pathway was first constructed and optimized in C. ljungdahlii to achieve an efficient production of isopropanol and an unexpected product, 3-HB. Based on this finding, an endogenous active dehydrogenase capable of converting acetoacetate to 3-HB was identified in C. ljungdahlii, thereby revealing an efficient 3-HB-producing pathway. The engineered strain was further optimized to reassimilate acetic acid and synthesize 3-HB by introducing heterologous functional genes. Finally, the best-performing strain was able to produce 13.4, 3.0, and 28.4 g/L of isopropanol, 3-HB, and ethanol, respectively, in continuous gas fermentation. Therefore, this work represents remarkable progress in microbial production of bulk chemicals using C1 gases.


Assuntos
2-Propanol/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Clostridium/metabolismo , Etanol/metabolismo , Fermentação , Engenharia Metabólica
12.
J Biol Chem ; 296: 100679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33872599

RESUMO

Polyprenyl groups, products of isoprenoid metabolism, are utilized in peptidoglycan biosynthesis, protein N-glycosylation, and other processes. These groups are formed by cis-prenyltransferases, which use allylic prenyl pyrophosphates as prenyl-donors to catalyze the C-prenylation of the general acceptor substrate, isopentenyl pyrophosphate. Repetition of this reaction forms (Z,E-mixed)-polyprenyl pyrophosphates, which are converted later into glycosyl carrier lipids, such as undecaprenyl phosphate and dolichyl phosphate. MM_0014 from the methanogenic archaeon Methanosarcina mazei is known as a versatile cis-prenyltransferase that accepts both isopentenyl pyrophosphate and dimethylallyl pyrophosphate as acceptor substrates. To learn more about this enzyme's catalytic activity, we determined the X-ray crystal structures of MM_0014 in the presence or absence of these substrates. Surprisingly, one structure revealed a complex with O-prenylglycerol, suggesting that the enzyme catalyzed the prenylation of glycerol contained in the crystallization buffer. Further analyses confirmed that the enzyme could catalyze the O-prenylation of small alcohols, such as 2-propanol, expanding our understanding of the catalytic ability of cis-prenyltransferases.


Assuntos
Biocatálise , Methanosarcina/enzimologia , Prenilação , Transferases/metabolismo , 2-Propanol/metabolismo , Cinética , Modelos Moleculares , Conformação Proteica , Transferases/química
13.
Artigo em Inglês | MEDLINE | ID: mdl-33657962

RESUMO

In this study, a lab-scale upflow anaerobic sludge blanket (UASB) reactor was applied to the treatment of artificial electronics industry wastewater containing tetramethylammonium-hydroxide (TMAH), monoethanolamine (MEA), and isopropyl-alcohol (IPA) in order to evaluate process performance and degradation properties. During 800 days of operation, 96% efficiency of chemical oxygen demand (COD) removal was stably achieved at an organic loading rate of 8.5 kgCOD/m3/day at 18-19 °C. MEA degradation, carried out by acid-forming eubacteria, was confirmed within a week. The physical properties of the retained granular sludge were degraded by feeding with TMAH wastewater, but maintained by feeding with MEA wastewater due to an accumulation of species from the genus Methanosaeta and family Geobacteraceae. Analysis of the microbial community structure via SEM and 16S rRNA genes showed a proliferation of Methanomethylovorans-like cells and Methanosaeta-like cells at the surface and in the core of the granular sludge with TMAH, MEA and IPA acclimation. Furthermore, a batch degradation experiment confirmed that process inhibition due to increasing chemical concentration was relatively stronger for TMAH than for MEA or IPA. Thus, controlling the TMAH concentration of the influent to below 1 gCOD/L will be important for the stable treatment of electronics industry wastewater by UASB technology.


Assuntos
Reatores Biológicos/microbiologia , Eletrônica , Microbiota/fisiologia , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , 2-Propanol/análise , 2-Propanol/isolamento & purificação , 2-Propanol/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Etanolamina/análise , Etanolamina/isolamento & purificação , Etanolamina/metabolismo , Compostos de Amônio Quaternário/análise , Compostos de Amônio Quaternário/isolamento & purificação , Compostos de Amônio Quaternário/metabolismo , Águas Residuárias/química
14.
BMC Microbiol ; 21(1): 50, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593288

RESUMO

BACKGROUND: Degradation of acetone by aerobic and nitrate-reducing bacteria can proceed via carboxylation to acetoacetate and subsequent thiolytic cleavage to two acetyl residues. A different strategy was identified in the sulfate-reducing bacterium Desulfococcus biacutus that involves formylation of acetone to 2-hydroxyisobutyryl-CoA. RESULTS: Utilization of short-chain ketones (acetone, butanone, 2-pentanone and 3-pentanone) and isopropanol by the sulfate reducer Desulfosarcina cetonica was investigated by differential proteome analyses and enzyme assays. Two-dimensional protein gel electrophoresis indicated that D. cetonica during growth with acetone expresses enzymes homologous to those described for Desulfococcus biacutus: a thiamine diphosphate (TDP)-requiring enzyme, two subunits of a B12-dependent mutase, and a NAD+-dependent dehydrogenase. Total proteomics of cell-free extracts confirmed these results and identified several additional ketone-inducible proteins. Acetone is activated, most likely mediated by the TDP-dependent enzyme, to a branched-chain CoA-ester, 2-hydroxyisobutyryl-CoA. This compound is linearized to 3-hydroxybutyryl-CoA by a coenzyme B12-dependent mutase followed by oxidation to acetoacetyl-CoA by a dehydrogenase. Proteomic analysis of isopropanol- and butanone-grown cells revealed the expression of a set of enzymes identical to that expressed during growth with acetone. Enzyme assays with cell-free extract of isopropanol- and butanone-grown cells support a B12-dependent isomerization. After growth with 2-pentanone or 3-pentanone, similar protein patterns were observed in cell-free extracts as those found after growth with acetone. CONCLUSIONS: According to these results, butanone and isopropanol, as well as the two pentanone isomers, are degraded by the same enzymes that are used also in acetone degradation. Our results indicate that the degradation of several short-chain ketones appears to be initiated by TDP-dependent formylation in sulfate-reducing bacteria.


Assuntos
2-Propanol/metabolismo , Acetona/metabolismo , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Cetonas/metabolismo , Sulfatos/metabolismo , 2-Propanol/farmacologia , Deltaproteobacteria/efeitos dos fármacos , Deltaproteobacteria/crescimento & desenvolvimento , Cetonas/química , Oxirredução , Proteoma , Proteômica/métodos
15.
Genomics ; 113(1 Pt 2): 1109-1119, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166602

RESUMO

Clostridium diolis DSM 15410 is a type strain of solventogenic clostridium capable of conducting isopropanol-butanol-ethanol fermentation. By studying its growth on different carbohydrates, we verified its ability to utilize glycerol and produce 1,3-propanediol and discovered its ability to produced isopropanol. Complete genome sequencing showed that its genome is a single circular chromosome and belongs to the cluster I (sensu scricto) of the genus Clostridium. By cultivation analysis we highlighted its specific behavior in comparison to two selected closely related strains. Despite the fact that several CRISPR loci were found, 16 putative prophages showed the ability to receive foreign DNA. Thus, the strain has the necessary features for future engineering of its 1,3-propanediol biosynthetic pathway and for the possible industrial utilization in the production of biofuels.


Assuntos
2-Propanol/metabolismo , Clostridium/genética , Genoma Bacteriano , Filogenia , Propilenoglicóis/metabolismo , Biocombustíveis , Clostridium/classificação , Clostridium/metabolismo , Microbiologia Industrial , Fenótipo
16.
Biochem J ; 477(11): 2027-2038, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32497192

RESUMO

Alkenes and ketones are two classes of ubiquitous, toxic organic compounds in natural environments produced in several biological and anthropogenic processes. In spite of their toxicity, these compounds are utilized as primary carbon and energy sources or are generated as intermediate metabolites in the metabolism of other compounds by many diverse bacteria. The aerobic metabolism of some of the smallest and most volatile of these compounds (propylene, acetone, isopropanol) involves novel carboxylation reactions resulting in a common product acetoacetate. Propylene is metabolized in a four-step pathway involving five enzymes where the penultimate step is a carboxylation reaction catalyzed by a unique disulfide oxidoreductase that couples reductive cleavage of a thioether linkage with carboxylation to produce acetoacetate. The carboxylation of isopropanol begins with conversion to acetone via an alcohol dehydrogenase. Acetone is converted to acetoacetate in a single step by an acetone carboxylase which couples the hydrolysis of MgATP to the activation of both acetone and bicarbonate, generating highly reactive intermediates that are condensed into acetoacetate at a Mn2+ containing the active site. Acetoacetate is then utilized in central metabolism where it is readily converted to acetyl-coenzyme A and subsequently converted into biomass or utilized in energy metabolism via the tricarboxylic acid cycle. This review summarizes recent structural and biochemical findings that have contributed significant insights into the mechanism of these two unique carboxylating enzymes.


Assuntos
Acetona/metabolismo , Alcenos/metabolismo , Bactérias/metabolismo , 2-Propanol/metabolismo , Acetoacetatos/metabolismo , Acetilcoenzima A/metabolismo , Bicarbonatos/metabolismo , Catálise , Ciclo do Ácido Cítrico/fisiologia
17.
Methods ; 172: 51-60, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31362039

RESUMO

Recent developments in CRISPR technologies have opened new possibilities for improving genome editing tools dedicated to the Clostridium genus. In this study we adapted a two-plasmid tool based on this technology to enable scarless modification of the genome of two reference strains of Clostridium beijerinckii producing an Acetone/Butanol/Ethanol (ABE) or an Isopropanol/Butanol/Ethanol (IBE) mix of solvents. In the NCIMB 8052 ABE-producing strain, inactivation of the SpoIIE sporulation factor encoding gene resulted in sporulation-deficient mutants, and this phenotype was reverted by complementing the mutant strain with a functional spoIIE gene. Furthermore, the fungal cellulase-encoding celA gene was inserted into the C. beijerinckii NCIMB 8052 chromosome, resulting in mutants with endoglucanase activity. A similar two-plasmid approach was next used to edit the genome of the natural IBE-producing strain C. beijerinckii DSM 6423, which has never been genetically engineered before. Firstly, the catB gene conferring thiamphenicol resistance was deleted to make this strain compatible with our dual-plasmid editing system. As a proof of concept, our dual-plasmid system was then used in C. beijerinckii DSM 6423 ΔcatB to remove the endogenous pNF2 plasmid, which led to a sharp increase of transformation efficiencies.


Assuntos
Sistemas CRISPR-Cas/genética , Clostridium beijerinckii/genética , Engenharia Metabólica/métodos , Plasmídeos/genética , 2-Propanol/metabolismo , Butanóis/metabolismo , Celulase/genética , Celulase/metabolismo , Celulose/metabolismo , Clostridium beijerinckii/metabolismo , Etanol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Edição de Genes/métodos , Genoma Bacteriano/genética , Microbiologia Industrial/métodos , Mutação , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Transformação Bacteriana
18.
Metab Eng ; 57: 23-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31377410

RESUMO

Genetic manipulation in cyanobacteria enables the direct production of valuable chemicals from carbon dioxide. However, there are still very few reports of the production of highly effective photosynthetic chemicals. Several synthetic metabolic pathways (e.g., isopropanol, acetone, isoprene, and fatty acids) have been constructed by branching from acetyl-CoA and malonyl-CoA, which are key intermediates for photosynthetic chemical production downstream of pyruvate decarboxylation. Recent reports of the absolute determination of cellular metabolites in Synechococcus elongatus PCC 7942 have shown that its acetyl-CoA levels corresponded to about one hundredth of the pyruvate levels. In short, one of the reasons for lower photosynthetic chemical production from acetyl-CoA and malonyl-CoA was the smaller flux to acetyl-CoA. Pyruvate decarboxylation is a primary pathway for acetyl-CoA synthesis from pyruvate and is mainly catalyzed by the pyruvate dehydrogenase complex (PDHc). In this study, we tried to enhance the flux toward acetyl-CoA from pyruvate by overexpressing PDH genes and, thus, catalyzing the conversion of pyruvate to acetyl-CoA via NADH generation. The overexpression of PDH genes cloned from S. elongatus PCC 7942 significantly increased PDHc enzymatic activity and intracellular acetyl-CoA levels in the crude cell extract. Although growth defects were observed in overexpressing strains of PDH genes, the combinational overexpression of PDH genes with the synthetic metabolic pathway for acetate or isopropanol resulted in about 7-fold to 9-fold improvement in its production titer, respectively (9.9 mM, 594.5 mg/L acetate, 4.9 mM, 294.5 mg/L isopropanol). PDH genes overexpression would, therefore, be useful not only for the production of these model chemicals, but also for the production of other chemicals that require acetyl-CoA as a key precursor.


Assuntos
Acetilcoenzima A , Proteínas de Bactérias , Redes e Vias Metabólicas , Fotossíntese , Complexo Piruvato Desidrogenase , Synechococcus , 2-Propanol/metabolismo , Acetatos/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Engenharia Metabólica , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
19.
N Biotechnol ; 56: 16-20, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731039

RESUMO

A bioreactor was designed to provide high gas mass transfer to reach cell and product titres in the g L-1 level from CO2 for realistic, laboratory scale, engineered autotrophic strain evaluation. The design was based on independent CO2, H2 and air inputs and the ability to operate at high pressures. The bioreactor configuration and cultivation strategy enabled growth of Cupriavidus necator strains for long periods, to reach over 3 g L-1 dry cell weight. No negative impact of the high pressure was observed on viability of the strains up to more than 4 bar overpressure. The cultivation was then carried out using an engineered isopropanol producing strain; in this case, 3.5 g L-1 isopropanol was obtained from CO2 as the sole carbon source. This is the first reported demonstration of a successful production from engineered bacteria of product in the g L-1 range on CO2, raising the prospect of future development of CO2-based bioprocesses.


Assuntos
2-Propanol/metabolismo , Reatores Biológicos , Dióxido de Carbono/metabolismo , Cupriavidus necator/química , 2-Propanol/química , Dióxido de Carbono/química , Cupriavidus necator/metabolismo
20.
J Biotechnol ; 305: 18-22, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31472166

RESUMO

C. tyrobutyricum, an acidogenic Clostridium, has aroused increasing interest due to its potential to produce biofuel efficiently. However, construction of recombinant C. tyrobutyricum for enhanced biofuel production has been impeded by the limited genetic engineering tools. In this study, a flavin mononucleotide (FMN)-dependent fluorescent protein Bs2-based gene expression reporter system was developed to monitor transformation and explore in vivo strength and regulation of various promoters in C. tyrobutyricum and C. acetobutylicum. Unlike green fluorescent protein (GFP) and its variants, Bs2 can emit green light without oxygen, which makes it extremely suitable for promoter screening and transformation confirmation in organisms grown anaerobically. The expression levels of bs2 under thiolase promoters from C. tyrobutyricum and C. acetobutylicum were measured and compared based on fluorescence intensities. The capacities of the two promoters in driving secondary alcohol dehydrogenase (adh) gene for isopropanol production in C. tyrobutyricum were distinguished, confirming that this reporter system is a convenient, effective and reliable tool for promoter strength assay and real time monitoring in C. tyrobutyricum, while demonstrating the feasibility of producing isopropanol in C. tyrobutyricum for the first time.


Assuntos
Álcool Desidrogenase/metabolismo , Clostridium tyrobutyricum/crescimento & desenvolvimento , Mononucleotídeo de Flavina/metabolismo , 2-Propanol/metabolismo , Álcool Desidrogenase/genética , Biocombustíveis , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/crescimento & desenvolvimento , Clostridium acetobutylicum/metabolismo , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Fluorescência , Genes Reporter , Engenharia Genética , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA